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a b s t r a c t

Modeling studies consistently demonstrate that the most violent winds in tornadic vortices
occur in the lowest tens of meters above the surface. These velocities are unobservable by
radar platforms due to line of sight considerations. In this work, a methodology is devel-
oped which utilizes parametric tangential velocity models derived from Doppler radar
measurements, together with a tangential momentum and mass continuity constraint, to
estimate the radial and vertical velocities in a steady axisymmetric frame. The main result
is that information from observations aloft can be extrapolated into the surface layer of the
vortex. The impact of the amount of information available to the retrieval is demonstrated
through some numerical tests with pseudo-data.

� 2014 Published by Elsevier Inc.

1. Introduction

The strongest wind speeds in tornados are believed to occur a few tens of meters above the surface. Due to line of sight
limitations, radar platforms are typically unable to measure this portion of the atmosphere. The relationship between the
measurable flow aloft, and the unobservable (by radar) flow near the surface is complex (see for instance [2,8,10,12] for dif-
ferent flow regimes).

The reviews [11,13,15] discuss the dynamics of different sections of a tornado. Snow [15] describes the change in mag-
nitude of the different wind components both in the vertical and radial directions, which is based on simulations in fluid
dynamics models and in the Tornado Vortex Chamber [1] at Purdue University. A tornado with a positive vertical velocity
along the central axis is called a ‘‘single celled’’ vortex. The tangential velocity mean field increases as a function of height
from ground level to a maximum, and then decreases again to the top of the vortex. Similarly, the tangential velocity in-
creases as a function of the distance from the center of the vortex until it reaches a maximum, and then decreases to zero.
This behavior can be captured with empirical parametric models, such as those discussed in [17]. Models of this type have
also been used in observational studies such as [18] to better understand measurements in the presence of noisy
observations.

In this paper, we estimate the three components of the wind velocity near ground level from observations aloft. The paper
is divided into sections as follows. In Section 2, we review the basic considerations regarding observations of atmospheric
circulations by radar instruments and define the problem domain and relevant parameters of interest. Section 3 introduces
a method for estimating the vortex radial and vertical velocities, and Section 4 discusses the mathematical issues related to

http://dx.doi.org/10.1016/j.amc.2014.01.010
0096-3003/� 2014 Published by Elsevier Inc.

⇑ Corresponding author at: University of Oklahoma, Norman, OK 73019, United States.
E-mail addresses: scrowell@ou.edu (S. Crowell), lwhite@ou.edu (L. White), Louis.Wicker@noaa.gov (L. Wicker).

Applied Mathematics and Computation 235 (2014) 201–211

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc



Author's personal copy

this method. The mathematical issues include positive aspects of estimating flow fields with these dynamics, as well as sit-
uations in which the dynamics are insufficient to estimate the flow on the entire domain. Section 5 examines a few physical
limitations of the approach. In Section 6, we perform an identical twin experimental test of the method for a tornado-like
vortex. We generate pseudo-observations with an assumed tangential velocity model and random errors. Then we estimate
the flow using the same tangential velocity model. This test is not meant to prove conclusively that the method will work
with a real data set, but rather to show the theory in action.

Remark 1.1. Many researchers in meteorology currently use variational techniques to estimate wind fields from radar
velocity measurements. These techniques are powerful, and are especially useful for dealing with noisy measurements. They
face the problems common to all optimal estimation techniques. Some of the difficulties are finding a unique global
minimum and minimizer, and the tendency of least squares techniques to reduce the magnitude of smaller scale features.
Further, a minimizer of a set of weakly enforced constraints may not satisfy any of the constraints particularly well.
Boundary conditions for these types of methods are usually not chosen physically, but rather are allowed to be retrieved with
the rest of the variables. The authors are well acquainted with these techniques, and propose the techniques in this paper as
a first step toward remedying some of these difficulties. Most variational techniques utilize some sort of descent based
minimization procedure, and the solutions provided by the method in this paper could be used as the ‘‘first guess’’ which is
required of all iterative schemes.

2. Background

Assume that two radar instruments measure a given volume of air simultaneously. The two horizontal components of the
velocity can be recovered if the radar beams are approximately horizontal. In this case, the measurements contain very little
information about the vertical component of velocity, i.e. are orthogonal to the vertically pointing basis vector. Take the flow
to be in cylindrical coordinates, with the axis of the coordinate system aligned along the vertical axis of the vortex. Thus the
recovered components are the tangential and radial components of the swirling flow.

For the remainder of the this work, assume two sets of wind measurements, which have been converted to radial and
tangential velocities for the vortex of interest, and averaged azimuthally to create an axisymmetric mean pair of velocities.
The spatial domain includes the vertical axis and the surface and measurements which are representable by a parametric
model. A family of parametric models for the tangential velocity is chosen which best approximate the qualitative features
of the given data, then a particular parameter set is selected so that the tangential velocity model is optimal (in some sense).
This is done in advance of seeking to estimate u and w.

In the next section, the estimation of radial and vertical velocities in a layer near the surface, where the velocities are not
observable, is considered. The problem is posed on the domain X, which is illustrated in Fig. 1. The domain is decomposed
into an observable region Xo and an unobservable region Xh, separated by a horizontal line z ¼ h. This line is referred to as
the minimum observable height (MOH) line. The domain on which we interested in retrieving the flow is referred to as the
surface layer, which is the portion of the domain between the height z ¼ 0 and z ¼ hs, where we will refer to hs as the surface
layer height. The parameter hs is chosen for the application of interest. For example, if we are interested in surface damage, it
might suffice to only examine the flow in the layer with hs ¼ 1 meter, whereas structural engineers might be interested in
multistory buildings, and would necessarily use a larger value for this parameter.

Fig. 1. Schematic of problem domain. The outer radial boundary is dashed to represent the unknown boundary condition.
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3. Estimating u and w

Assume that the vortex is approximately steady and axisymmetric, and that vðr; zÞ captures the essence of the tangential
velocity present in the observations. Consider the steady, axisymmetric Navier–Stokes equations of motion, given by
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where u; v and w represent the three components of the velocity vector in cylindrical coordinates, q the density, p the pres-
sure, and m the fluid viscosity. Further, assume that the fluid is incompressible, and so mass conservation takes the form

1
r
@ðruÞ
@r
þ @w
@z
¼ 0: ð4Þ

If vðr; zÞwere a component of a true solution to (1)–(3), then this system would still have a unique solution if v exactly mod-
eled error free data, and if these equations exactly hold for real atmospheric vortices. Realistically, observational and model
errors lead us to conclude that enforcing only a subset of these dynamics may help to avoid an overdetermined problem.

Introduce the vertical vorticity fðr; zÞ ¼ 1
r
@ðrvÞ
@r and the radial vorticity gðr; zÞ ¼ � @v

@z. With these substitutions, (2) can be
rewritten as
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which is an algebraic relation between u and w, once v has been selected. Next, introduce a streamfunction W, defined by
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in cylindrical coordinates, so that W satisfies (4) automatically. The tangential momentum Eq. (5) becomes
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This is a hyperbolic boundary value problem on Xh. The boundary conditions at the surface and vertical axis should yield
vortical flows similar to actual atmospheric vortices. By choosing zero Dirichlet boundary conditions for W on the lower
and axial boundaries, mass is conserved. The boundary condition for u along z ¼ h is provided by the measurements, and
the boundary condition for w is taken to be the result of solving (5) for w and substituting in the condition for u. Once
wðr; zÞ is known along the MOH line, W is recovered using

Wðr;hÞ ¼ �
Z r

0
swðs;hÞds: ð7Þ

The outer radial boundary is left unconstrained for the moment.
Eq. (6) is quasilinear with associated characteristic equations [7]:

dr
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¼ gðr; zÞ; ð8Þ
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where t is the characteristic variable for the position along the characteristic curve given by ðrðtÞ; zðtÞÞ. To seek solutions
these ordinary differential equations must be supplemented with initial conditions. Let s denote the characteristic variable
which distinguishes between different characteristic curves, by parameterizing the initial values for r; z, and W, and define
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rð0; sÞ ¼ s; ð11Þ

zð0; sÞ ¼ h; ð12Þ

Wð0; sÞ ¼ �
Z s

0
swðs;hÞds: ð13Þ

This choice of initial conditions means that the equations are initialized with values on the upper boundary of Xh and allow
the dynamics to propagate the information contained on them down into the domain.

Remark 3.1. Assuming that v 2 CkðXhÞ for some k P 2, classical results from the theory of ordinary differential equations
(for example, those in [5] provide existence and uniqueness of solutions to these initial value problems, and smoothness
with respect to the initial conditions. This implies that if a point ðr; zÞ lies on a characteristic curve that intersects the upper
boundary of Xh, there is a classical solution W defined at ðr; zÞ that satisfies (10) and (13).

Remark 3.2. The fluid viscosity m is an important physical constant for the purposes of time dependent model simulation.
Since the flow is stationary, the value of m for molecular diffusion has a small impact on the results with this method. How-
ever, a Reynolds averaged view of the turbulent flow in an actual atmospheric vortex replaces the molecular value for m with
a function mðt; r; zÞ that is dependent on the velocities in a potentially nonlinear way. Predicting mðt; r; zÞ is handled by tur-
bulence parameterization schemes, and is beyond the scope of this work. The authors recognize that the inability to predict
mðt; r; zÞ directly places a limitation on the applicability of this method to ‘‘real’’ atmospheric flows in its current form.

In order to simplify the discussion, we introduce the following notation.

Definition 1. For a point ðro; zoÞ 2 Xh, define

(1) cð�; ro; zoÞ : R! X: the solution mapping of the dynamical system (8) and (9) with initial condition ðro; zoÞ.
(2) Cðro; zoÞ ¼ cðR; ro; zoÞ: the set of all points ðr; zÞ which can be attained by integrating (8) and (9) (either forwards or

backwards) starting from ðro; zoÞ.
(3) Kh ¼ fðro; zoÞ 2 Xhjðr;hÞ R Cðro; zoÞ8r 2 ½0;R�g.

Cðr; zÞ is referred to as the characteristic curve containing ðr; zÞ. The set Kh is referred to as the information void for the prob-
lem, because the dynamics do not carry information from aloft to these points.

4. Surface layer wind velocities

Assume that vðr; zÞ ¼ /ðrÞwðzÞ, where

Assumption 4.1.

(1) / and w both are k times continuously differentiable ðk P 2Þ.
(2) (no-slip condition) /ð0Þ ¼ wð0Þ ¼ 0.
(3) / > 0 on ð0;RÞ and w > 0 on ð0;HÞ.
(4) d/

dr ðroÞ þ 1
ro

/ðroÞ ¼ 0 and 1
r

dðr/Þ
dr – 0 for r – ro.

(5) dw
dz ðzoÞ ¼ 0 and dw

dz – 0 for z – zo.

This assumption allows a more thorough analysis, and [17] has demonstrated the utility of such models for data analysis.
A schematic streamfunction of a vortex embodied in these assumptions is shown in Fig. 2.

The following result says that Assumption 4.1 always yields a nontrivial surface layer in which we can retrieve the flow:

Theorem 4.2. If Assumption 4.1 holds, then there is an ho such that if z < ho; Cðr; zÞ \ X nXhð Þ – ;.
The next four results form the basis of the proof of Theorem 4.2. The next result is well-known in the fluid dynamics com-

munity, and we prove it here as a reference and for completeness of the presentation.

Lemma 4.3. The characteristic curves Cðr; zÞ are the level curves of C, where C ¼ rv is the circulation on circles parallel to the
horizontal plane, centered on the vertical axis.

Proof. When g – 0, we can write the solution curves as ðr; zðrÞÞ by considering

dz
dr
¼ f

g
ð14Þ
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and when f – 0 as ðrðzÞ; zÞ from

dr
dz
¼ g

f
: ð15Þ

Note that

f
g
¼ ðrvÞr�rvz

¼ �Cr

Cz
;

which implies that the characteristic curves are everywhere tangent to the level curves of C. Hence, viewed in the plane,
these two collections of curves are the same. h

Remark 4.4. This result specifies the characteristic curves in terms of our tangential velocity model, which is estimated a
priori utilizing a least squares (or some other) data mismatch criterion. It also gives a criteria by which to avoid the solution
W being multiply defined, which can occur when using method of characteristics. To avoid this behavior, choose v to be
appropriately smooth.

The next result states that when the maximum tangential velocity is in the observable region, then the flow is retrievable
over all of X using characteristics.

Lemma 4.5. If h < zo, then Kh ¼ ;.

Proof. There are two cases. For r 6 ro; g < 0 and f P 0. Hence if Cðr; zÞ is traversed in the positive t direction, the curve must
eventually cross z ¼ h, since Cðr; zÞ cannot intersect the vertical axis. For r > ro; g < 0 and f < 0. Since Cðr; zÞ cannot intersect
the horizontal axis, there must be a z1 such that ðro; z1Þ 2 Cðr; zÞ, and now apply the argument from the first case, using ðro; z1Þ
as our initial point. Hence, for any ðr; zÞ 2 Xh; Cðr; zÞ \ X nXhð Þ– ;, which implies Kh ¼ ;. h

Lemma 4.6. Suppose that 0 < z1 < H satisfies Cðro; z1Þ � Xo. Then Cðro; z1Þ is a closed curve.

Proof. Let z1 > zo. Since C has only a single relative maximum, @C
@r > 0 for r < ro and @C

@r < 0 for r > ro, and similarly for the
vertical gradient of C. Consider the characteristic curve which passes through ðro; z1Þ, and first traverse in the positive t direc-
tion. Since Czðro; z1Þ < 0; g > 0, and so the characteristic curve moves to the right. For r > ro and z > zo; g > 0 and f < 0, and
so the characteristic curve moves to the right and down. Since Cðr0; z1Þ � Xo, there must be an r1 with ro < r1 < R such that
ðr1; zoÞ 2 Cðro; z1Þ, else Cðro; z1Þwould cross the line r ¼ R. Similarly, since for r > ro and z < zo; g < 0 and f < 0, there must be
a 0 < z2 < z0 such that ðro; z2Þ 2 Cðro; z1Þ. Otherwise Cðro; z1Þ would intersect the lower axis z ¼ 0, which would contradict
Corollary 5.1. Thus Cðro; z1Þ intersects the line r ¼ ro at ðro; z2Þ. By traversing Cðro; z1Þ in the negative t direction starting from
ðro; z1Þ, and using similar arguments, there is a 0 < z3 < zo such that ðro; z3Þ 2 Cðro; z1Þ.

Suppose z2 < z3. Then there is a z� with z2 < z� < z3, and since Cz > 0, we must have that

Cðro; z2Þ < Cðro; z�Þ < Cðro; z3Þ: ð16Þ

Fig. 2. Schematic of characteristic curves under Assumption 4.1, where the relative maximum of C occurs at ðro; zoÞ.
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But this is a contradiction, since Cðro; z2Þ ¼ Cðro; z3Þ.
Let t2 such that cðt2; ro; z1Þ ¼ ðro; z2Þ and t3 such that cð�t3; ro; z1Þ ¼ ðro; z3Þ. Then cðt2 þ t3; ro; z1Þ ¼ ðro; z1Þ and Cðro; z1Þ is

closed.
If z1 < zo, a symmetric argument shows that Cðro; z1Þ is closed. h

Lemma 4.7. Suppose that zo < h. Then one and only one of the following statements holds:

(1) Cðro;hÞ is a closed curve, and Kh is the interior of the region enclosed by Cðro;hÞ.
(2) Cðro;hÞ intersects the outer radial boundary at ðR; z1Þ and ðR; z2Þ, and Kh is the interior of the region enclosed by Cðro; hÞ

and the segment fðR; zÞ : z1 6 z 6 z2g

Proof. First, if Cðro; hÞ is not a closed curve, then if Cðro; hÞ is traversed in the negative t direction, it must cross the line z ¼ zo,
and then the line r ¼ ro, because Cðro;hÞ cannot intersect the axes. This implies that there is a t such that cð�t; ro;hÞ ¼ ðr�; z�Þ
with r� > ro and z� < zo. If Cðro;hÞ were to cross the line z ¼ zo again, then the signs of the vorticities would force Cðro;hÞ to
intersect r ¼ ro, and at the point ðro;hÞ by the argument in Proposition 4.6. Similarly, if Cðro;hÞ is traversed in the positive t
direction, Cðro;hÞ cannot cross the line z ¼ zo, or else Cðro;hÞwould be a closed curve. Thus, either Cðro; hÞ is a closed curve, or
Cðro;hÞ intersects the outer radial boundary at two distinct points ðR; z1Þ and ðR; z2Þ, where z1 < zo < z2. In either case, denote
the set enclosed by Cðro;hÞ (and possibly fRg � ½z1; z2�) by Ko.

If ðr; zÞ 2 Xh n Ko, proceed as before by traversing Cðr; zÞ either in the positive (r < ro or z < zo) or negative (r > ro and
z > zo) t direction. Note that cðt; r; zÞ R Ko for all t 2 R because @Ko ¼ Cðro;hÞ (possibly plus the outer boundary), and
characteristic curves may not intersect. Since cðt; r; zÞ also cannot intersect the axes, there must be a t such that
cðt; r; zÞ 2 X nXhð Þ. Thus K � Ko.

If ðr1; z1Þ 2 Ko, then Cðr1; z1Þ > Cðr; zÞ for all ðr; zÞ 2 X nXh. Thus Cðr1; z1Þ \ X nXhð Þ ¼ ; and so ðr1; z1Þ 2 K. Hence Ko � K ,
and K ¼ Ko. h

4.1. Proof of Theorem 4.2

Proof. If zo P h, simply take ho ¼ h by Lemma 4.5. Suppose zo < h. Since Cðro;hÞ � X is either closed or intersects the outer
radial boundary, it is also compact. Hence the map ðr; zÞ# z has a minimizer at some point ho. Thus, if z < ho; ðr; zÞ R Kh, and
so Cðr; zÞ \ X nXhð Þ– ; by Proposition 4.7. h

Remark 4.8. The height z ¼ ho can be referred to as the minimum unreachable height, since for values of z < ho, the solution is
reachable via characteristic curves. Under Assumption 4.1, the proof of Theorem 4.2 implies that ho is the smallest solution of
wðzÞ ¼ wðhÞ.

Remark 4.9. A similar result holds for the map ðr; zÞ# r, implying the existence of a ‘‘minimum unreachable radius’’, though
this is not directly relevant to the problem initially posed.

Remark 4.10. This result could be extended to a more general form of vortex that has a single maximum that is unaligned
with the axes, by allowing the parameter rc to vary with height. For example, a conical vortex would be described by
rc ¼ rg þ az, where rg is the radius of maximum winds at the ground, and a is the slope of the line in the r � z plane along
which the maximum velocity is achieved. The proof would differ only in the z dependence of rc , with the signs of the vor-
ticities broken up accordingly. The parameter estimation problem would also gain another dimension, which should not
cause too much of a problem given the volume of radar velocity measurements.

5. Model limitations

5.1. Boundary conditions

The following corollary follows immediately from Assumption 4.1 and Lemma 4.3.

Proposition 5.1. If Assumption 4.1 holds, then no characteristic curve may intersect the lines r ¼ 0 and z ¼ 0.

Proof. Note that Cð0; zÞ ¼ Cðr; 0Þ ¼ 0. Since C > 0 on the interior of Xh, no level curve of C intersections the boundaries, and
hence no characteristic curves intersect the axes. h

Remark 5.2. Proposition 5.1 implies that the choice of boundary conditions along the surface and the vertical axis do not
affect the flow on the interior of the domain, so long as v vanishes on these axes. This is a consequence of the choice of
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dynamical constraints, and removes a physical degree of freedom from the problem, since in real vortices, surface roughness
effects can propagate into the domain.The literature contains multiple discussions (e.g. [8,11]) of what boundary conditions
are most realistic, and generate physically realistic vortices. It is intuitively clear that the radial and vertical velocities will
depend on the their behavior at the surface and along the central vertical axis, but this is not captured by the dynamics we
are choosing to constrain the solution.

5.2. Multiple MOH intersections

Another difficulty is the possibility of characteristic curves intersecting the MOH line multiple times. In this case, the
boundary data on the MOH line may not be compatible with the dynamics. For real data, this will almost certainly not be
the case due to noise and the error introduced by the tangential model v. This situation is reminiscent of the data assimila-
tion problem that is usually tackled using least squares minimization of an objective functional that penalizes disagreement
between model prediction and observation relative to the uncertainty present in each. More information about this topic is
found in [9]. This problem will be addressed in a future work.

5.3. Velocities above the minimum unreachable height

The results in Section 4 point to potential difficulties when hs > ho, the minimum unreachable height guaranteed by The-
orem 4.2. Clearly, there are portions of this set that are reachable by characteristics, namely those characteristic curves that
pass through to the surface layer below ho. The rest of Xh is precisely Kh, which we have called the information void.

6. Numerical experiments

In this section, a simple test of the theory developed in Section 4 is demonstrated. This experiment is an identical twin,
since the same functional form is used to generate the observations as the one used to select v and estimate u and w. Initial
tests showed that dependence on the viscosity m was small. With this in mind, assume m ¼ 0, which simplifies the numerics
from solution of a linear ordinary differential equation for U to solving the equation Uðr; zÞ ¼ Uðro; hÞ. This equation can be
approximately solved to any specified degree of accuracy using a simple bisection method.

6.1. Generation of pseudo-observations

As a first experiment, a collection of pseudo-observations is generated that emulates a single time of model output from
Davies-Jones’ axisymmetric model, described in [4]. At the time of interest, the tangential velocity near the surface exhibits a
single maximum. The radial velocity is negative beneath this maximum, which is typical of a swirling flow [14] with a no-slip
condition on the tangential velocity, and represents air being drawn into the vortex. Finally, the vertical velocity is relatively
large and positive along the axis adjacent to the tangential maximum, which is also typical of these types of flows. The tan-
gential velocity vðr; zÞ is modeled using a product of functions of the form

/wwðx;n; xcÞ ¼
nxc

n�1x
ðn� 1Þxn

c þ xn
: ð17Þ

The function / has a smooth maximum at ðxc;1Þ, and increases approximately linearly on ð0; xcÞ, and decays like xn�1 as
x!1. Assume

vðr; zÞ ¼ vc/wwðr;nr; rcÞ/wwðz;nz; zcÞ: ð18Þ

This function satisfies Assumption 4.1, and so all of the theory in Section 4 is valid for this choice of model. The velocity pseu-
do-obs used are depicted in Fig. 3, with the tangential velocity depicted as contours, and the radial and vertical velocities
depicted as a single vector in the r � z plane. The notable feature of the isolated maximum in the tangential velocity and
corresponding C are what we are most interested in capturing for these tests.

6.2. Impact of MOH on surface layer thickness

As a demonstration of Theorem 4.2, the streamfunction for a fixed initial condition was computed for MOH values of 1.5,
2.5 and 3.5. The resulting surface layer streamfunction is plotted in Fig. 4. Note that as more of the vortex is observable, more
is retrieved below the MOH line. Also note that even in the case with the least information (h = 3.5), there is a retrieved sur-
face layer of nontrivial thickness.

6.3. Sensitivity to model parameter values

In order to better understand the algorithm presented in the previous sections, we now present results that attempt to
quantify the variability in the radial and vertical velocity fields that arise from our choice of parameter values for our tan-
gential model v. Following [16], we define a probability density function
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pðvc; rc; zc;nr ;nzÞ ¼ C exp �
Xnobs

i¼1

vobs
i � vmod

i

 !2
2
4

3
5; ð19Þ

over the parameter space, where vmod
i is the model in (18) evaluated at the location of the pseudo-observation.

Since the minimum unreachable height is itself a function of the tangential model parameters, a direct comparison of dif-
ferent retrieved surface layers is not possible. In order to compare the results from different parameter values, we define a
pair of real-valued random variables. First, the maximum inflow speed, uþ, is defined as

uþ ¼min
z<zc

uðr; zÞ: ð20Þ

Second, define the absolute maximum velocity, j~vjmax, as

j~v jmax ¼max
Xh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þw2

p
: ð21Þ

Sample distributions of these random variables are computed as realizations of different parameter sets passed through the
forward model to retrieve the three components of the wind velocity and weighted by the agreement with the tangential
velocity observations, viewed as a probability density over the set of admissible parameters Q. These distributions give a
sense of the sensitivity of the retrieved velocities to the parameters in the forward model.

As a first step, we take Q to be a product of closed intervals that bound each parameter, and sample each interval with a
uniform spacing. In the case of vc; zc and rc , we can specify reasonable bounds from the data itself, which contains at least a
lower bound on the maximum wind speed and a general idea of the location of the maximum swirl velocity. The parameters
nr and nz are less physically constrained, though bounded below by 1, and so we choose larger intervals to allow for more
flexibility.
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Fig. 4. Comparison of retrieved surface layers for three different MOH values.
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The following list summarizes the steps of the numerical experiment described above, and whose results are shown
below:

(1) For a specified minimum observable height (h ¼ 2 in this case), sample the space Q of admissible parameters and com-
pute the error and corresponding probability density function p.

(2) Sort the sample in order of decreasing likelihood (increasing disagreement with observations).
(3) Compute the retrieved radial and vertical velocities using the characteristic method as described above for as many

parameter sets as is computationally feasible, using the velocities in the pseudo-observations to initialize the stream-
function calculation, assuming that the flow is inviscid (m ¼ 0) to minimize computational cost.

(4) Compute uþ and j~vjmax for the retrieved sample, and plot distributions.

6.4. Sample results

Fig. 5 shows the 1000 most likely parameter values for nz; zc and vc for the tangential model v, with a perfect observation
assumption (i.e. no observational errors) and m ¼ 0. Observations further from the vortex maximum provide less of a con-
straint on the parameters, especially those that model the z-dependence. This is evident in the flatter distributions for larger
values of h. Interestingly, the third column of Fig. 5, which gives the distribution for vc and the columns of Fig. 6, which give
the resulting distributions of uþ and j~v jmax, suggest that larger values of h lead to predictions of weaker extrema. The distri-
butions for uþ and j~v jmax translate toward zero with increasing values of h, which indicates a weaker vortex. This finding is in
agreement with [10], which discussed simulations that implied that the ratio of maximum swirl velocity, which is equal in
the model chosen here to vc , to uþ is constant, and so a reduced vc would correlate with a reduced uþ.

This result suggests that using vortex models such as the Rankine vortex or the Wood-White vortex model to estimate
vortex strength with observations that are not sufficiently close to the surface could lead to predictions that are biased to-
wards lower wind speeds.

Fig. 5. Sample distributions of 1000 most likely values of nz; zc and vc with minimum observable height values of 1.5, 2 and 3, with no observational errors.
Note that as the information decreases, the parameters become less well-constrained, which is evident in the flattening of the sample distributions.
Distributions for nr and rc (not shown) were relatively insensitive to h.
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6.5. Observational errors

Numerical experiments were performed that examined the impact of random observational errors on the retrieved veloc-
ities, to mimic the impacts of scatterer-related noise in radar velocities as discussed in [6]. The results are detailed in [3]. As
the size of the noise increases from 1 ms�1 to 3 ms�1 (normalized by 75 ms�1, the Davies-Jones model core swirl velocity),
the spread of the distributions for the parameters increases, as does the spread of the resulting uþ and j~v jmax, leading to less
certainty in the true values of these variables.

Fig. 6. Resulting distributions of 1000 most likely values of uþ and j~v jmax with minimum observable height values of 1.5, 2 and 3, with no observational
errors. Note that as the information decreases, the overall distribution tends toward a weaker prediction, which is evident in shifting of the distributions
toward zero.
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6.6. Impacts of viscosity

In order to examine the impacts of the inviscid simplification for the numerical tests, further experiments were per-
formed in which m was allowed to vary from 0 to the size of the vertical velocity gradient @v

@z. These tests indicated a strong
sensitivity of uþ and j~v jmax to the magnitude of the parameter m, which is due to the scaling of the right hand side of (10).
Since this parameter is unknown for real flows, this presents a serious challenge to applicability of the method outlined here-
in for real data cases. Future work for the method will include attempting to fit this parameter using data above the MOH line
in a least squares framework.

7. Discussion

A methodology was introduced for extrapolating observations of wind velocities downward toward the surface. For the
dynamics chosen to constrain the flow, the information contained in observations aloft propagates along curves that coincide
with the level curves of C ¼ rv , which is estimated from observations in advance of the problem discussed here, and hence is
known a priori. With more assumptions about the tangential model, the location and size of the information void Kh are ex-
actly known for a specific value of h. An exciting result is the existence of a nontrivial height ho, below which, everything can
be retrieved using the characteristic framework.

An idealized set of pseudo-observations was created that approximate the behavior of simulated tornadoes. The flow was
then estimated assuming different amounts of knowledge, embodied in the parameter h. These experiments yield mixed re-
sults, because it always occurs that the true value of uþ or j~vjmax falls inside the spread of results, but not always with the
correct frequency (relative to agreement with the tangential velocity observations). It is clear from the theory that the func-
tional form chosen for vðr; zÞ has strong impacts on what can be retrieved, as well as the quality of what is retrieved. An
interesting physical result is that weaker tangential flow leads to weaker inflow and smaller absolute wind speeds overall,
in agreement with established literature.

The authors assert that knowledge of the shortcomings of a particular method is valuable information; hence, the analysis
of and focus on information voids. In a more standard variational technique, these voids would not appear, because the var-
ious smoothness terms would ensure that a smooth solution is defined everywhere. However, the solution in those regions is
no more physically relevant than any other solution, since it is completely determined by the terms that are introduced for
numerical stability. A natural next step is the inclusion of another dynamical constraint, such as the balance equation for
azimuthal vorticity. This extra constraint could yield a method to estimate a meaningful solution in the information voids,
without relying on unphysical smoothing.
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